

The Kigali Amendment: What Does it Actually Do and Why Should I Care?

Andreea Kaye

European Partnership for Energy and the Environment (EPEE)

secretariat@epeeglobal.org

Air System Engineering & Technology (ASET) Conference-Europe Lyon, France • L'Espace Tête d'Or • 20 February 2018

Copyright Materials

This educational activity is protected by U.S. and International copyright laws. Reproduction, distribution, display, and use of the educational activity without written permission of the presenter is prohibited.

© AMCA International

Outline

- Introduction to the Kigali Amendment
- Working principle of the phase-down
- Impact on business
- Some lessons learned from Europe
- Conclusions
- Q&A

CLIMATE CHANGE IS A GLOBAL ISSUE OUR INDUSTRY IS A GLOBAL INDUSTRY

What is the Kigali Amendment?

- Adopted by the 28th Meeting of Parties to the Montreal Protocol on 15 October 2016 in Kigali, Rwanda.
- It adds HFCs to the list of substances controlled under the Montreal Protocol.
- It will phase-down HFCs under the Montreal Protocol as their use is increasing rapidly as substitutes for ozone-depleting substances.
- According to UNEP, the HFC phase-down is expected to avoid up to 0.5°C of global temperature rise by 2100, while continuing to protect the ozone layer

What does it look like?

Article 5 countries

- Group 1: All those that are not Group 2
- Group 2: Bahrain, India, Iran, Iraq, Kuwait, Oman, Pakistan,
 Qatar, Saudi Arabia, UAE

Article 2 countries

- All developed countries
- Different baseline calculation and initial phase-down steps for Belarus, the Russian Federation, Kazakhstan, Tajikistan and Uzbekistan
- Technology review in 2022 and every 5 years
- Technology review 4 to 5 years before 2028 to consider compliance deferral of 2 years for Art. 5 – Group 2 to address growth

In detail

	Art. 5 – Group 1	Art. 5 – Group 2	Art. 2 – Main Group	Art. 2 – Others
Baseline	2020, 2021, 2022	2024, 2025, 2026	2011, 2012, 2013	2011, 2012, 2013
Baseline Calculation	 Average prod./consumption of HFCs in 2020, 2021, 2022 Plus 65% of HCFC baseline prod./consumption 	 Average prod./consumption of HFCs in 2024, 2025, 2026 Plus 65% of HCFC baseline prod./consumption 	 Average prod./consumption of HFCs in 2011, 2012, 2013 Plus 15% of HCFC baseline prod./consumption 	 Average prod./consumption of HFCs in 2011, 2012, 2013 Plus 25% of HCFC baseline prod./consumption
Reduction Steps	 Freeze: 2024 2029: 10% 2035: 30% 2040: 50% 2045: 80% 	 Freeze: 2028 2032: 10% 2037: 20% 2042: 30% 2047: 85% 	 No freeze 2019: 10% 2024: 40% 2029: 70% 2034: 80% 2036: 85% 	 No freeze 2020: 5% 2025: 35% 2029: 70% 2034: 80% 2036: 85%

Article 5 Countries have a "future baseline" => The coming years will the crucial for them to establish the starting point for their phase-down steps

High Ambient Temperature Exemption: Allows for a delay in the HFC freeze date by an initial duration of 4 years if not suitable alternatives exist (multi-splits, ducted splits, ducted commercial packaged)

Main differences between Art. 2 and Art. 5 countries

Timetable

Phase-down timetable is much faster in the EU

Developments in EU available to A5 via "international pull-through"

HCFCs

EU has stopped using HCFCs;
HFC markets are mature

Significant use of HCFCs in A5 countries + growing HFC use

Extra rules

Mandatory leakage reduction, technician training, gas recovery

Various additional product bans

Some of these could be considered in A5

When does it enter into force?

The Kigali Amendment will enter into force on 1 January 2019 as it has been ratified by 27 Parties. The condition for entry into force was ratification by at least 20 Parties

- Australia
- Côte d'Ivoire
- Canada
- Chile
- Comoros
- Democratic People's Republic of Korea
- Ecuador
- Finland
- Germany
- Lao People's Democratic Republic
- Luxemburg
- Malawi
- Maldives
- Mali
- Marshall Islands
- Micronesia
- Netherlands
- Norway
- Palau
- Rwanda
- Slovakia
- Sweden
- Trinidad & Tobago
- Tuvalu
 - United Kingdom

How does the phase-down work?

- The phase-down is based on CO2-equivalents
- It does not ban specific refrigerants but impacts particularly those with a high GWP
- The amount of CO2-equivalents is calculated by multiplying kg x GWP
- The higher the GWP of a refrigerant, the higher the amount of CO2-equivalent it represents for a given quantity, and the more it will come under pressure by the phase-down reduction steps
- There are several ways to ease the pressure of the phase-down steps:
 - 1. Reduce the GWP of the refrigerant
 - 2. Reduce the refrigerant charge size of the equipment
 - 3. Reduce leakages
 - 4. Recover, recycle and reclaim refrigerants

Example:

How does it impact business? In terms of refrigerants used

Global HFC consumption in tonnes of CO2-equivalent (2012)

- 3 dominant blends: R-404A, R-410A, R-407C, all of them containing the high GWP gas R-125
- The phase-down will hit products with high GWP hardest

How does it impact business? In terms of applications

Air-to-air air-conditioning equipment and commercial refrigeration will be hit hardest by phase-down reduction steps

Source: Ozone Secretariat Technical Factsheet

What does it mean in practice? The European example

The EU F-Gas Regulation

onfere

Containment & Competence

Regular leak checks

Certification and training of installers

Phase-Down

Consumption Reduction of HFCs

Y 2020: -37%

Y 2030: -79%

GWP Limits

2015: GWP 150 Fridges & Freezers

2020: GWP 150 Moveable A/C

2020: GWP 2500 New Stat. Refr. Equipment & service, maintenance

2022: GWP 150 Multipack refrigeration systems >40kW (except cascades: GWP1500)

2025: GWP 750 Single split a/c < 3kg

Others

2015: Reporting obligations

2017: Traceability for pre-charged equipment

2015 – 2022: various reports

20 Feb. 2018 w

The biggest challenge?

An additional 22 MT CO₂ (12%) for precharged equipment expected

The HFC phase-down!

Understanding the market: The role of the EPEE Gapometer

What is the EPEE Gapometer?

- A Roadmap to show how the phase-down steps can be achieved
- A model to measure progress in the market & compare to the Roadmap requirements
- A tool to communicate key issues to policy makers and industry stakeholders

Key priorities identified by the EPEE Gapometer to achieve the HFC phase-down steps

leak prevention

1. Actions for new equipment

- · use lower GWP alternatives
- · design for less refrigerant charge and low leakage

retrofit with low GWP alternatives

3. Use of reclaimed refrigerant

2. Actions for existing equipment

- · recovered from equipment at end-of-life
- · recovered during retrofit of existing equipment

Which market segments need to move first?

First market experiences: refrigerant prices are skyrocketing!

- With the big cuts looming in 2018 and 2021, HFC prices have virtually started to explode, in particular for high GWP refrigrants such as R-404A, but also for others such as R-410A and even R-134a
- Many companies seem to be taken by surprise and are now struggling to cope with high prices and refrigerant scarcity, some of them even for survival

What happened?

The uptake of lowGWP alternatives is too slow

- Most of the low GWP alternatives are mildly flammable or flammable
 - → Non adapted standards & building codes and lack of installer competence slow down the transition towards lower GWP refrigerants
- Lack of awareness at installer and enduser level and sometimes high refrigerant / equipment cost are also important hurdles
 - If one segment does not move fast enough, the others will suffer too!

But there are also positive developments

Several segments of the OEM market have already started to shift towards lower GWP alternatives. Typical trends include:

- → R-32 in the stationary air-conditioning market, in particular small split a/c equipment < 3kg filling charge
- → HFOs in the chiller market, such as R-1234ze/yf, R-1233zd and others
- → CO2 and hydrocarbons in the refrigeration market, in particular for larger centralised equipment (CO2) and for plug-in equipment (hydrocarbons)

Ex. of the Gapometer market survey

Lessons learned from the Gapometer in Europe

End-users and OEMs must be encouraged to use lower GWP options

Lower GWP refrigerants are already available but uptake is slower than expected

More flammable refrigerants:

Training and development of safety standards are urgent priorities

Advisors / contractors:

Must understand the need for lower GWP options and alternative configurations

Leakage reduction and R-404A retrofits

Good progress by "best practice supermarkets" but much more needs to be done.

Need of action also in industrial refrigeration, which is well behind supermarkets

R-404A retrofits with GWP ~1400 possible:

Maximising recovery and reuse of retrofitted R-404A is key to meet phase-down targets

Reclaim of refrigerant makes an important contribution to HFC phase-down as they are not part of quota

Higher refrigerant prices and shortages of high GWP HFCs will encourage reclaim

Contractors and end-users need to maximise recovery

Gas supply chain must provide supporting infrastructure

Conclusions

- A phase-down leaves flexibility for industry but must not be considered as an excuse to wait until it's too late
- Companies need to develop strategies and plan ahead carefully to be prepared
- First movers will have an advantage
- Countries with phase-down schemes in place will influence technology developments on a global level
- Framework conditions such as standards, building codes and installers' competence are key for success
- Communication towards all concerned stakeholders (installers, specifiers, planners, OEMS, end-users) is vital to raise awareness about the phase-down and understanding about the necessity to act

Questions?

20 Feb. 2018 www.aset-europe.com

Andreea Kaye

European Partnership for Energy and the Environment (EPEE) secretariat@epeeglobal.org

